On a Boundary Value Problem for Scalar Linear Functional Differential Equations
نویسنده
چکیده
Theorems on the Fredholm alternative and well-posedness of the linear boundary value problem u′(t)= (u)(t) + q(t), h(u)= c, where : C([a,b];R)→ L([a,b];R) and h : C([a, b];R)→ R are linear bounded operators, q ∈ L([a,b];R), and c ∈ R, are established even in the case when is not a strongly bounded operator. The question on the dimension of the solution space of the homogeneous equation u′(t)= (u)(t) is discussed as well.
منابع مشابه
Existence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کاملSolutions for some non-linear fractional differential equations with boundary value problems
In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators. Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems.
متن کاملTriple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian
In this paper, we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian dynamic equation on time scales. We prove the existence at least three positive solutions of the boundary value problem by using the Avery and Peterson fixed point theorem. The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly. Our results ...
متن کاملOn boundary value problem for fractional differential equations
In this paper, we study the existence of solutions for a fractional boundary value problem. By using critical point theory and variational methods, we give some new criteria to guarantee that the problems have at least one solution and infinitely many solutions.
متن کاملF-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM
We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...
متن کامل